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H. Falakshahi1, Z.Á. Németh1,2, and J.-L. Pichard1,3,a
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Abstract. The ground state of an electron gas is characterized by the interparticle spacing to the effective
Bohr radius ratio rs = a/a∗

B. For polarized electrons on a two dimensional square lattice with Coulomb
repulsion, we study the threshold value r∗s below which the lattice spacing s becomes a relevant scale and rs

ceases to be the scaling parameter. For systems of small ratios s/a∗
B , s becomes only relevant at small rs

(large densities) where one has a quantum fluid with a deformed Fermi surface. For systems of large s/a∗
B ,

s plays also a role at large rs (small densities) where one has a Wigner solid, the lattice limiting its harmonic
vibrations. The thermodynamic limit of physical systems of different a∗

B is qualitatively discussed, before
quantitatively studying the lattice effects occurring at large rs. Using a few particle system, we compare
exact numerical results obtained with a lattice and analytical perturbative expansions obtained in the
continuum limit. Three criteria giving similar values for the lattice threshold r∗s are proposed. The first
one is a delocalization criterion in the Fock basis of lattice site orbitals. The second one uses the persistent
current which can depend on the interaction in a lattice, while it becomes independent of the interaction
in the continuum limit. The third one takes into account the limit imposed by the lattice to the harmonic
vibrations of the electron solid.

PACS. 71.10.-w Theories and models of many-electron systems – 71.10.Fd Lattice fermion models
(Hubbard model, etc.) – 73.20.Qt Electron solids

1 Introduction

When one considers interacting electrons free to move in
an immobile background of positive ions, one can repre-
sent the ions by a uniform positive jellium if the electron
density is sufficiently small. This uniform jellium gives
simply rise to a constant term in the Hamiltonian. One
gets a continuum model characterized by two scales: the
inter-electron spacing a and the effective Bohr radius a∗

B.
Simple scaling laws are obtained if one uses the dimen-
sionless ratio rs = a/a∗

B. This continuum approximation
neglects the discrete character of the lattice of positive
ions.

If one wants to keep the periodic character of the ionic
lattice, one has to include a periodic potential instead of a
uniform jellium or to use the tight-binding approximation.
One obtains a lattice model, where the kinetic energy can
be simplified if the hopping terms are restricted to nearest
neighbor ions. A lattice introduces a third scale: the lattice
spacing s. If s is irrelevant, the lattice model keeps the
same universal scaling than the continuum limit, if one
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uses the combination of lattice parameters which becomes
rs = a/a∗

B in the continuum.
We study when the low energy spectrum of the lattice

model can be described by a continuum approximation,
the lattice effects remaining only important in the high
energy spectrum. What is the carrier density above which
the scale s becomes relevant and rs ceases to be the scaling
parameter for the lattice ground state (GS)? The answer
depends on s and on the two parameters controlling the
effective Bohr radius

a∗
B =

εr�
2

m∗e2
: (1)

the effective mass m∗ of the carriers and the dielectric
constant εr of the medium.

If a∗
B is large compared to s, the lattice effects are only

important for small values of rs, for which one has a quan-
tum fluid with a deformed Fermi surface. This is a highly
quantum weak coupling limit of large carrier densities. If
the issue is to study charge crystallization in such sys-
tems, the densities of interest are much lower than those
required to deform the Fermi surface, and the physics can
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be described in the continuum approximation. If one uses
a L × L lattice model with N particles to study electron
crystallization for systems of small s/a∗

B, one has to take
lattice fillings N/L2 and hence ratios rs above the lattice
threshold r∗s , where the lattice model can be described by
the continuum limit.

If a∗
B is small compared to s, the lattice effects be-

come important when rs is large also. This is a limit where
the lattice physics takes place also in a weakly quantum
strong coupling regime, at low densities. If one continues
to increase the density in those systems, one can eventu-
ally reach the limit usually described by a Hubbard model
near half filling, where the lattice can give rise to a Mott
insulator if the interaction is large enough. In contrast to
the case where a∗

B is large compared to s, the continuum
approximation cannot be assumed for studying electron
crystallization. One has the obvious problem of commen-
surability between the electron lattice characterizing the
continuum limit and the ionic lattice. Even if there is com-
mensurability, there is a remaining limit imposed by the
lattice to the harmonic vibrations of the Wigner solid.

Eventually, let us note that for a lattice model, it is
important to know the electron density below which the
ground state (GS) begins to exhibit the continuum behav-
ior and its universal scaling laws, if one uses the combi-
nation of lattice parameters which becomes rs = a/a∗

B in
the continuum.

2 Two dimensional continuum model

The Hamiltonian Hc describing N polarized electrons of
mass m free to move on a continuum space of dimension d
and dielectric constant εr = 1 contains one body kinetic
terms, two body interaction terms plus the constant term
due to the presence of the uniform background of positive
ions necessary to have charge neutrality

Hc = − �
2

2m

N∑
i=1

∇2
i + e2

∑
1≤i<j≤N

1
|ri − rj | + const. (2)

Measuring the energies in Rydbergs (1 Ry = me4/2�
2)

and the lengths in units of the radius a of a sphere (circle
in 2d) which encloses on the average one electron, e and
m being the electronic charge and mass, Hc becomes

Hc = − 1
r2
s

N∑
i=1

∇2
i +

2
rs

∑
1≤i<j≤N

1
|ri − rj | + const., (3)

where rs = a/aB. The Bohr radius aB = �
2/me2 is a

measure of the GS radius of the hydrogen atom while the
rydberg (1 Ry = e2/(2aB)) is its GS binding energy. Equa-
tion (3) tells us that the physics of a system of interacting
electrons in the continuum does not depend on many inde-
pendent parameters (�, e, m, the electronic density ns...)
but only on a single dimensionless scaling ratio rs = a/aB

when N → ∞, aB characterizing the scale for the quan-
tum effects.

For the GS, if many electrons are inside the quantum
volume ad

B, one gets the weak coupling limit (small rs)
where one has a Fermi liquid. Though our theory could
be easily extended to arbitrary dimensions and could in-
clude the spin degrees of freedom, we restrict the study
to polarized electrons (spinless fermions) and to the di-
mension d = 2. The GS energy in rydbergs per particle is
given in the Hartree-Fock approximation [1] as:

E0 =
h0

r2
s

+
h1

rs
+ O(ln rs), rs � 1 (4)

with coefficients h0 = 2 for the kinetic energy and h1 =
−1.6972 for the exchange energy.

In the strong coupling limit (large rs), the volume per
electron ad is large compared to ad

B, and the electrons crys-
tallize on an hexagonal lattice with weak quantum effects
(Wigner crystal). As Wigner’s original approximation [2]
suggests, the GS energy per particle in rydbergs can be
expanded in powers of r

1/2
s :

E0 =
f0

rs
+

f1

r
3/2
s

+
f2

r2
s

+ O
(
r5/2
s

)
, rs � 1. (5)

The leading term (∝ r−1
s ) is of classical nature (Coulomb

energy of the lattice of electrons in a continuum
background of positive charge) while the first correc-
tion (∝r

−3/2
s ) is quantum (zero point energy of the har-

monic oscillations of the electrons about their lattice
points). One gets [3–6] f0 = −2.2122 and f1 = 1.628 in
two dimensions.

Using quantum Monte Carlo methods, the two dimen-
sional crossover between these two limits has been studied.
A variational approach [6] and a Green function Monte
Carlo approach [7] have given a critical ratio rc

s ≈ 37 for a
possible transition separating the quantum fluid from the
Wigner solid in the continuum. However, the well-known
sign problem of the Monte Carlo methods requires to im-
pose the nodal structures of the solutions, making this
picture not free of certain assumptions.

Assuming periodic boundary conditions (BCs) for N
polarized electrons in a square of size D, one can ignore
the constant term in Hc, the electronic density ns = N/D2

and a = 1/
√

πns.

3 Square lattice model

Before defining the considered lattice model, let us distin-
guish the finite size effects from the lattice effects. Let us
assume a finite continuum domain in which the electrons
are free to move. In the classical limit (� → 0), the N elec-
trons become localized and may form a periodic lattice.
The exact form of this lattice depends on the shape of the
domain (square, rectangle, . . .), on the nature of the condi-
tions imposed at its boundaries (periodic, hard walls, . . .)
and on the number N of electrons. Moreover, the Coulomb
repulsion requires a definition of the distance r between
two electrons, a definition for which there can be a cer-
tain freedom (shortest distance on a square with periodic
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Fig. 1. Weak coupling limit: GS occupation numbers of a non
interacting system in the reciprocal lattice. The Fermi-surfaces
are sketched for increasing numbers of particles in a 36 × 36
square lattice. At low fillings, the Fermi surface is almost a
circle, while it becomes deformed at larger fillings.

BCs, actual distance on the surface of a torus in three
dimensions, . . .) unless one assumes an infinite two di-
mensional repetition with Ewald summation. In the limit
of an infinite continuum domain, the electron lattice be-
comes hexagonal [5], independently of the definition of r.
In the quantum limit (� → ∞), the reciprocal space is
quantized, as sketched in Figure 1, so that the Fermi sur-
face may not be a perfect circle and the Fermi shell can be
totally or partially filled. Hereafter, we refer to the previ-
ously mentioned effects as “finite size effects”, keeping the
term “lattice effects” for those effects which are specific of
an electron motion restricted to a lattice.

There are two kinds of lattice effects in the classical
limit where the electrons form already a lattice: the first
are due to the possible incommensurability between the
two lattices, the second are due to the difference between
a discrete and a continuum motion. We do not study the
first commensurability effects which may become impor-
tant in the classical limit. For instance, one can assume N
such that the two lattices are commensurate, as for the
oblique lattice sketched in Figure 2. This oblique lattice
is obtained taking for r the shortest distance of a finite
square with periodic BCs and is very close to the hexago-
nal lattice characteristic of an infinite continuum domain.
In this case, the continuum and lattice Coulomb ener-
gies are the same at equilibrium, but the motions around
equilibrium can be different. To study more precisely this
second kind of lattice effects, we define a square lattice
model of spacing s, size L = D/s, nearest neighbor hop-
ping element

t =
�

2

2ms2
(6)

and interaction strength

U =
e2

s
. (7)

Fig. 2. Strong coupling limit: GS occupation numbers of a
Wigner solid in real space. The oblique lattice of N electrons
is close, though not identical (finite size effect) to the hexagonal
lattice characteristic of the thermodynamic limit and becomes
commensurate with the L×L square lattice when N = L = 30.

The lattice Hamiltonian Hl reads:

Hl = t


4N −

∑
〈j,j′〉

c†j cj′


+

U

2

∑
j�=j′

njnj′

|djj′ | . (8)

The operators c†j (cj) create (annihilate) a polarized elec-
tron (spinless fermion) at the site j and 〈j, j′〉 means that
the sum is restricted to nearest neighbors. djj′ is the dis-
tance between the sites j and j′ in unit of s.

The Hamiltonian (8) can also be written using the op-
erators d†k (dk) creating (annihilating) a polarized electron
in a plane wave state of momentum k:

Hl = 4Nt − 2t
∑

k

(cos kx + cos ky) d†kdk

+U
∑

k,k′,q

V (q)d†k+qd†k′−qdk′dk (9)

where
V (q) =

1
2L2

∑
j

cosqj
dj0

. (10)

The states of different total momenta K are decoupled. In
the lattice units, 1Ry = U2/4t, aB = 2st/U and the ratio
rs becomes:

rs =
a

aB
=

UL

2t
√

πN
. (11)

4 Lattice effects in the thermodynamic limit

4.1 Lattice threshold in the weak coupling limit

In the limit rs → 0, the GS energy is mainly kinetic. This
is a consequence of the Pauli exclusion principle, which
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pushes the Fermi energy of the non interacting system
to much higher values than the classical Coulomb energy.
The GS kinetic energies of Hl and Hc become different
when the Fermi surface is deformed by the lattice. Such a
deformation can give rise to nesting effects with important
consequences discussed in the literature [8–10]. The Fermi
wave vectors kF are given by 4t−2t(coskF

x +coskF
y ) = εF

for a square lattice of Fermi level εF , instead of t(kF
x +

kF
y )2 = εF for the continuum limit.

Expanding the kinetic part of the lattice
Hamiltonian (9) for small wave vectors, one gets:

Hkin
l ≈ t

∑
k<kF

k2 − t

12

∑
k<kF

(
k4

x + k4
y

)
. (12)

For the first term, one recovers the kinetic term of the
continuum expansion (4):

t
∑

k<kF

k2 ≈
∫

D2

(2π)2
�

2

2m
k2d2k

=
N2

�
2π

mD2
=

2
r2
s

(NRy), (13)

while the lattice correction reads:

∆El = − t

12

∑
k

k4
x + k4

y

= − �
2

24ms2

∫
L2

(2π)2
(k4

x + k4
y)d2k (14)

which becomes, using kF =
√

4Nπ/L:

∆El = −�
2N3π2

mL4s2
= −NRy

2
r2
s

πN

L2
. (15)

The condition for having the lattice correction ∆El

(Eq. (15)) smaller than the continuum kinetic energy
(Eq. (13)) yields

rs > r∗s ≈ s

aB
. (16)

This estimate of r∗s is only valid when rs → 0, since it
neglects the effect of the interaction. When one turns on
the interaction, transitions from states below the Fermi
surface to states above it (see Hamiltonian (9) and Fig. 1)
take place. This smears the Fermi surface, giving an un-
certainty ∆kF to kF . This uncertainty is evaluated in Ap-
pendix A. One gets:

∆kF =
U2L

t2
√

N

I2

16
√

4π
. (17)

Since cos(kF +∆kF ) ≈ 1−(kF +∆kF )2/2 when kF +∆kF

is small (say kF + ∆k < π/2), one finds that the previ-

ous estimate ∝ s/aB for r∗s is increased by an interaction
effect ∝ (s/aB)3 for small rs.

4.2 Lattice threshold in the strong coupling limit

In the strong coupling limit rs → ∞, the GS energy is
mainly classical (Coulomb energy) with weak quantum
corrections. The electron lattice minimizing the Coulomb
energy in the continuum can be different of the square lat-
tice of the model. One does not discuss this obvious source
of lattice effects when rs → ∞, restricting the study to val-
ues of N and L where the two lattices are commensurate
and give the same Coulomb energy, as the oblique lat-
tice shown in Figure 2. But, even for this case, the lattice
can nevertheless change the vibration modes of the elec-
tron system around its classical electrostatic limit, when
� → 0. Let us consider the leading quantum corrections
to the classical energy.

In the continuum model, the GS energy per particle in
rydbergs is given by equation (5). The first quantum cor-
rection ∆Ec

0(rs → ∞) to the Coulomb energy (∝ r−1
s ) is

given by the zero point energy of the harmonic oscillations
of the electrons around their lattice points:

∆Ec
0(rs → ∞) =

f1

r
3/2
s

. (18)

In the lattice model, the classical limit t → 0 is not de-
scribed by the expansion in powers of r

1/2
s valid in the

continuum limit (Eq. (5)), but by a lattice perturbation
theory where the small parameter is t2/U . Examples of
this lattice expansion valid when t2/U → 0 can be found
in references [11–15]. Its dominant quantum correction
∆El

0(rs → ∞) to the classical Coulomb energy comes from
the term 4Nt of the lattice Hamiltonian (8). Expressed in
rydbergs (1 Ry = U2/4t) per particle, this gives

∆El
0(rs → ∞) =

16t2

U2
. (19)

The next quantum corrections of order t2/U become neg-
ligible in the limit t ∝ �

2 → 0.
Let us consider a low density of electrons in a very

large lattice, where one has the same hexagonal lattice
with the same harmonic vibrations than in the continuum.
The quantum corrections to the Coulomb energy and rs

are then given by equations (18) and (11) respectively.
If one takes the classical limit � → 0 in such a system,
∆Ec

0(rs) will reach the lattice limit ∆El
0(rs) which can-

not be exceeded. This corresponds to coupling strengths
where the harmonic vibrations of the electron lattice be-
come so small that the discrete nature of the available
space [13,14] becomes relevant. The lattice threshold r∗s
is then obtained from the condition ∆Ec

0(rs) ≈ ∆El
0(rs)

and the continuum approximation is only valid if:

N

L2
<

1
π

(
45

f4
1

)1/3(
t

U

)2/3

. (20)
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Table 1. Typical physical parameters for two dimensional
systems of charges of increasing effective masses created in
various devices: (1) Si-Mosfet, (2) n-doped GaAs - GaAlAs
heterostructure, (3) p-doped GaAs - GaAlAs heterostructure,
(4) cuprate oxides exhibiting high-Tc superconductivity and
(5) layered sodium cobalt oxides NaxCoO2.

m∗/m0 εr a∗
B (Å) s (Å) s/a∗

B

(1) 0.19 12 33, 2 2.35 0.071

(2) 0.07 13 100, 0 4.0 0.04

(3) 0.6 13 12 4.0 0.33

(4) 10 10 0.53 3.8 7.16

(5) 175 20 0.061 2.85 46.7

Using the lattice spacing to the Bohr radius ratio s/aB,
one gets that the lattice GS can be described by a contin-
uum theory in the thermodynamic limit if

rs > r∗s = 0.55
(

s

aB

)4/3

, (21)

and exhibits lattice effects otherwise.

4.3 Two dimensional systems of different a∗
B

If the effective mass of the carriers is m∗ in a medium
of dielectric constant εr, one must replace aB by the cor-
responding effective Bohr radius a∗

B. Some typical values
of m∗/m0, εr, a∗

B, s and s/a∗
B are given in Table 1 for

two dimensional systems of charges created in various sys-
tems. In general, the lattice spacing s is always of a few
angstroms, and εr ≈ 10. But the carriers can be light or
heavy, as indicated in Table 1.

When they are light, as in Ga-As heterostructures or in
Si-Mosfets, s is small compared to a∗

B, and r∗s is small. The
immobile ions can be modeled by a continuum uniform
jellium, unless one reaches the very large densities where
the Fermi surface becomes deformed. These densities are
out of reach in today’s semi-conductor field effect devices.
Therefore, if one numerically studies charge crystallization
for those systems using a lattice model, U/t, L and N must
be taken such that rs = (UL/2t)/(

√
πN) > r∗s .

In the cuprate oxides exhibiting high-Tc superconduc-
tivity, the effective mass of the carriers is heavier, though
not large enough for having s/a∗

B above 23, the value for
which 0.55(s/a∗

B)4/3 ≈ 37. The deformation of the Fermi
surface by the lattice yields nesting effects which can be re-
sponsible for singlet d-wave superconductivity [16] in those
oxides. The lattice filling is large, reaching the limit where
one can take a Hubbard model near half-filling. When one
goes away from half-filling by chemical doping, those sys-
tems can reach a more dilute limit where one gets a quan-
tum fluid which can be described by a continuum theory
and where the scaling parameter rs becomes relevant.

There are systems with much larger effective masses,
as those described by heavy fermions theories where s/a∗

B
can exceed 23. One example is given [17] by layered

s/aB

ν

ν

a/a

=2

B

37

23 65
0

0

=1

* 4/3

cont. solid

x

cuprates

Na  CoO2

latt. liq.

GaAs

B

cont. liq.

*

*

lattice solid

0.55 (s/a  )

Fig. 3. Sketch of the lattice and continuum regimes in the
(s/a∗

B, a/a∗
B) plane. In the non-shaded part, the lattice GS can

be described by a continuum theory. The shaded part below
the dashed line ν = N/L2 = 1 (2 with spins) is forbidden in
a lattice model (more than 1 (2 with spins) electron per site).
The line rs = a/a∗

B ≈ 37 gives the density under which Wigner
crystallization is assumed to occur in the continuum. The
thick line 0.55(s/a∗

B)4/3 gives the lattice threshold r∗s above
rs ≈ 37, while the dotted line gives r∗s ∝ s/a∗

B + O(s/a∗
B)3

below rs ≈ 37. The three double arrows correspond to typi-
cal Ga-As heterostructures, cuprate oxides and layered sodium
cobalt oxides NaxCoO2. Increasing the density, one goes from
a continuum liquid or solid towards lattice regimes.

Lithium or Sodium Cobalt oxides: LixCoO2 or NaxCoO2,
where the effective mass of carriers can reach≈200, a value
more familiar to f -band heavy fermions than to d-band
metals, as discussed by Roger and Shannon [18]. Those
systems look particularly interesting for the subject of this
study, since one should observe by increasing the carrier
concentration a continuum-lattice transition for the elec-
tron (or hole) crystal, before having the quantum melting
of this crystal in the lattice solid regime, to eventually ob-
tain at higher densities a quantum fluid with a deformed
Fermi surface.

In Figure 3, the regime of validity of the continuum ap-
proximation is given in the (s/a∗

B, a/a∗
B) plane, for typical

Ga-As heterostructures, cuprate oxides or layered sodium
cobalt oxides NaxCoO2. The dashed line ν = N/L2 = 1
corresponds to systems usually described by the half-filled
Hubbard model, when the spins are included. Increasing
the density, one goes towards a lattice regime where the
continuum approximation breaks down, giving rise to a
lattice liquid (s/a∗

B < 23) or to a lattice solid (s/a∗
B > 23).

5 Scaling in a lattice model with a fixed
number N of particles

Let us define the lattice parameter suitable when N is
constant.

rl =
UL

t
= rs(2

√
πN). (22)

So far, we have considered the realistic case where N is
varied by an electrostatic gate or by chemical doping in
a lattice where L, t and U , and hence rl are given. One
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can also study the lattice-continuum crossover by varying
the lattice parameter rl in a system of N particles. If N
remains constant in a lattice where one varies rl ∝ rs,
one gets the continuum limit and its universal scaling for
small values of rl while the lattice becomes relevant and
the continuum scaling breaks down for large rl.

This can be seen from Hamiltonian (9), where the com-
ponents of the two dimensional vectors k,k′ and q can
take the values 0, 2π/L, . . . , 2π(L− 1)/L. If the Fermi en-
ergy is sufficiently small for having 4−2(coskx +cos ky) ≈
k2 for all the states below the Fermi surface, the kinetic
energy reads

4Nt − 2t
∑

k<kF

(cos kix + cos kiy) ≈ 4π2t

L2

N∑
i=1

p2
i , (23)

where ki = (2π/L)pi with px, py << L for all ki < kF .
Expressed in rydbergs (1 Ry = U2/4t), the diagonal ma-
trix elements of Hamiltonian (9) due to the kinetic energy
depend only on the lattice parameter rl:

4π2t

L2

N∑
i=1

p2
i =

16π2

r2
l

(
N∑

i=1

p2
i

)
Ry. (24)

The diagonal Coulomb matrix elements are given by
N(N − 1)UV (q = 0) − ∑i�=i′ UV (ki − ki′ ), while the
off-diagonal terms ∝ U(V (ki1 − k′

i′1
) − V (ki1 − k′

i′2
)),

where V (q) is given by equation (10). If U is small, only
the off-diagonal terms with small momentum transfers
(q = (2π/L)p with px, py � L) play a role. Transforming
the discrete sum to a continuum integral, one gets for the
interaction matrix elements:

UV (q) =
U

2L2

∑
j

eiqj

dj,0

=
U

2L

∑
j

eiLq j
L

dj,0/L

∆jx

L

∆jy

L

≈ U

2L

∫ 1

0

∫ 1

0

e2πipr

d(r, 0)
d2r =

U

2L
I(p). (25)

The integral I(p) is independent [13] of L when px, py �
L and the Coulomb matrix elements of Hamiltonian (9)
become also a function of the lattice parameter rl only:

UV (q) =
4t

U2

U

2L
I(p) Ry =

2I(p)
rl

Ry. (26)

For N fixed, assuming that N is small enough for avoid-
ing deformed Fermi surfaces without interaction, the low
energy levels depend only on the lattice parameter rl

when rl is small. The question is to determine the interac-
tion threshold r∗l above which the off-diagonal interaction
terms begin to delocalize this GS to states of higher mo-
menta, where 4−2(coskx +cosky) �= k2. When rl exceeds
this r∗l , the lattice GS ceases to be a function of rl ∝ rs

as in the continuum limit.

6 Lattice effects for a few correlated particles

We propose three criteria giving similar lattice thresh-
olds r∗l for an interacting system of N polarized electrons,
which will be carefully studied when N = 3 in the next
section. The first one is a delocalization criterion in the
Fock basis of lattice site orbitals. The second one uses the
invariance of the persistent current when one varies the in-
teraction strength in the continuum, an invariance which
can be broken by the lattice. The third one is based on the
limit imposed by the lattice to the zero point energy of the
harmonic vibrations of an N electron solid, as previously
discussed in the thermodynamic limit.

6.1 Criterion 1: Delocalization in the Fock basis
of lattice site orbitals

Let us consider the system of N particles in real space
instead of reciprocal space, in the limit t = 0 where the
N electrons are localized on N sites (see Fig. 2) and form
states |J〉 = c†j1 . . . c†jN |0〉 of energy ECoul(J). As one turns
on t, one can expect that the lattice becomes irrelevant as
each electron ceases to be localized on a single site. In
analogy with the problem of a single particle in a disor-
dered lattice, one can use the criterion first proposed by
Anderson [19]: delocalization takes place when the hop-
ping term t between directly coupled sites becomes of the
order of their energy spacing ∆E. This criterion was ex-
tended to interacting systems in many different contexts:
onset of quantum chaos in many body spectra [11,20,21]
and in the quantum computer core [22], quasi-particle
lifetime and delocalization in Fock space [23,24]. In our
case, the states become delocalized in the many body
basis built from the states |J〉 when the matrix element
〈J ′|Hkin|J〉 of the one body perturbation Hkin ∝ t cou-
pling a state |J〉 to the “first generation” of states |J ′〉 di-
rectly coupled to it by Hkin exceeds their energy spacing
∆ECoul = ECoul(J ′) − ECoul(J). This gives t > ∆ECoul.
Applying this criterion to the GS, one obtains r∗l from the
condition

t ≈ ∆ECoul, (27)

where ∆ECoul is the increase of Coulomb energy yielded
by the hop of one particle localized on the GS configura-
tion to a nearest neighbor site when t = 0. When t exceeds
∆ECoul, the GS is delocalized on the J-basis, and hence
on the lattice, and the lattice GS behaves as the contin-
uum GS.

6.2 Criterion 2: Persistent currents

Since a continuum model is invariant under translations,
the motion of the center of mass can be decoupled from
the relative motions. Thus the continuum Hamiltonian Hc

(Eq. (3)) can be decomposed in two parts, one related to
the center of mass motion which is independent of the in-
teraction, while the second one contains only the relative
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motions and hence the interaction. This has a very impor-
tant consequence for the persistent current I driven by an
enclosed Aharonov-Bohm flux Φ in a continuum model:
I is independent of rl and keeps its non interacting value.
For having the topology of a 2d torus enclosing φ along
the x-direction, one takes the corresponding curled BC in
this direction, keeping periodic BC in the y-direction. For
a sufficient rl, the electrons form a Wigner solid and the
small relative motions cannot feel the BCs. In this limit,
I is just given by the center of mass motion, which is inde-
pendent of rl, and hence coincides with its non-interacting
value. This point remains correct for small rl, as it was
proven for 1d-rings [25–27] and observed for d = 2 [25].
In contrast, since the previous decomposition into two
parts does not necessary hold for Hl, I �= I(rl = 0) for
a lattice when Hl and Hc have different GSs. The decay
of I above r∗l (small t/U at fixed N and L) can be eval-
uated [12,13,15] by the leading contribution (of order N)
I
(N)
l ∝ t(t/U)N−1 of the t/U lattice expansion. The value

of rl for which
I(U = 0) ≈ I

(N)
l (28)

gives the Criterion 2 for r∗l (see Fig. 6). Instead of I(Φ),
one can prefer to use the Kohn curvature CK = ∂2E0/∂Φ2

evaluated at Φ = 0 or the GS energy change ∆E0 =
E0(Φ = 0) − E0(Φ = Φ0/2) where Φ0 is the flux quan-
tum. To apply Φ0/2 corresponds to have anti-periodic BC
in the x-direction.

6.3 Criterion 3: Lattice limit for the zero point motion
of an electron solid

This is the criterion that we have already used in the qual-
itative discussion of the thermodynamic limit, and which
we consider when N is finite. When t/U → 0, the leading
correction to the Coulomb energy of Hl is 4Nt. Since the
correction Evib(rl) to the Coulomb energy coming from
the zero point vibrational motion of the continuum solid
cannot exceed this lattice limit 4Nt, r∗l can be obtained
from the condition

Evib(r∗l ) ≈ 4Nt, (29)

assuming that the values of the lattice parameters can
yield a Wigner solid for rl < r∗l .

7 Numerical study of three polarized
electrons

When one takes periodic BCs, a convention has to
be chosen for the distance r (Hamiltonian (3)) or djj′

(Hamiltonian (8)). For a finite square with periodic BCs,
one possible definition is given by:

dPSC
jj′ =

√
min(|dx, L − |dx|)2 + min(|dy|, L − |dy|)2,

(30)

Fig. 4. Energy ratio FN=3(L, U, t) as a function of rl = UL/t
given by the PRC repulsion for L = 6 (�), 9 (�), 12 (�), 15 (�),
18 (◦). The dotted-dashed line gives the behavior 0.2327

√
rl

(harmonic vibrations of the continuum Wigner molecule) and
intersects the limiting dashed lines 12t/(4t − 4t cos(2π/L)) at
the r∗l (L) corresponding to criterion 3. Inset: a GS configura-
tion when t = 0 and L = 24.

where dx = jx−j′x and dy = jy −j′y. Hereafter, we refer to
the corresponding 1/|djj′ | repulsion as the periodic singu-
lar Coulomb (PSC) repulsion, since it has a cusp when the
interparticle distance djj′ has one of its coordinates equal
to L/2. This cusp being unphysical, we introduce the pe-
riodic regularized Coulomb (PRC) repulsion, defined from

dPRC
jj′ =

L

π

√
sin2 |dx|π

L
+ sin2 |dy|π

L
(31)

which locally coincides with the PSC repulsion, but re-
mains analytic for all values of djj′ when s → 0. The PRC
repulsion is essentially equivalent to the Ewald repulsion
obtained from the periodic repetition of the considered
system.

Defining djj′ with equation (31), we calculate the quan-
tities used in the different criteria for N = 3 polarized
electrons on a square lattice. We give in Appendix C the
same analysis defining djj′ with equation (30) instead of
equation (31). The choice of the PRC or PSC repulsions,
or of the repulsion obtained after Ewald summation is
arbitrary for three particles in a toroidal geometry. Nev-
ertheless, it allows us to check if our three proposed cri-
teria for r∗l give consistent results when the long range
form of the Coulomb repulsion is changed. The presented
results extend to larger L previous studies of the case
N = 2 and N = 3 given in reference [14] and reference [13]
respectively.

For t = 0, the configuration of particles minimizing
the PRC Coulomb energies is given in the inset of Fig-
ure 4. The values of L = 6, 9, 12, 15, 18, . . . yield a diago-
nal Wigner molecule shown in the inset which is commen-
surate with the square lattice. Moving one particle by a
single hop increases the Coulomb energy E0 = (

√
6Uπ)/L
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Fig. 5. GS energy E0(Φ) − E0(Φ = 0) as a function of the
enclosed dimensionless magnetic flux Φ/Φ0 for N = 3, L = 18,
PRC interaction at rl = 6 (◦), 60 (�), 600 (�) 6000 (�) and
60000 (�).

by an amount

∆ECoul ≈ 7
√

2π3U

12
√

3L3
(32)

when L is sufficiently large.
For U = 0, the GS energy is given by E0(0) = 12t−8t−

4t cos(2π/L) for periodic BCs and becomes E0(Φ0/2) =
12t−8t cos(π/L)−4t cos(3π/L) when one twists the BC in
the x-direction. The difference ∆E0 = E0(Φ0/2)−E0(0) ≈
−14π2t/L2 when L → ∞. When t/U is small, ∆E0 can
be calculated at the leading order of a t/U -expansion [13]
for N = 3. This gives when L is large:

lim
rl→0

∆E0 ≈ 14π2t

L2
; lim

rl→∞∆E0 ≈ 9π2t3

L2∆ECoul
(33)

where ∆ECoul is given by equation (32). Using these ex-
pressions, one obtains from the two first criteria:

r∗l (L) = ALα (34)

where α = 4 for the PRC repulsion, the constant A slightly
depending on the taken criterion.

7.1 Persistent currents

We now present numerical results obtained using the
Lanczos algorithm, using Hamiltonian (9) and considering
the sub-space of total momentum K = 0 [13] for periodic
BCs (no applied flux).

Our system has the topology of a 2d torus. To en-
close an Aharonov-Bohm flux Φ along the x-direction,
one takes the corresponding curled BC in this direction
while the BC in the y-direction remains periodic. To ap-
ply half a flux quantum (Φ = Φ0/2) is equivalent to take
anti-periodic BC along the x-direction. In Figure 5, the
increase E0(Φ) − E0(0) of the GS energy E0 is given
as a function of Φ/Φ0 for different values of rl using a
18 × 18 square lattice. When rl is small, the curves coin-
cide. This is the continuum regime where the persistent

0.01 1 100 10000

r
l

0.1

1

∆E
0
(r

l
)/∆E

0
(r

l
=0)

Fig. 6. Dimensionless change ∆E0(rl)/∆E0(rl = 0) of the GS
energy when the longitudinal BC is twisted for L = 6 (�),
9 (�), 12 (�), 15 (�), 18 (◦) and N = 3 as a function of rl

(PRC repulsion).

current is independent of the interaction. When rl is large,
the increase E0(Φ) − E0(0) becomes weaker. This is the
lattice regime where the persistent current decays as the
interaction increases. One gives in Figure 6 the dimension-
less change ∆E0(rl)/∆E0(rl = 0) of the GS energy when
the BC is twisted in the x-direction for increasing values
of L. One can see the two limits given by equation (33),
∆E0(rl)/∆E0(rl = 0) ≈ 1 in the continuum limit, fol-
lowed by a decay when rl exceeds the lattice threshold r∗l .

7.2 Harmonic vibrations of the continuum Wigner
molecule

For the third criterion, one needs the zero point vibra-
tional energy of the Wigner molecule that the three par-
ticles form when rl is large, but smaller than r∗l . This can
be calculated in the continuum limit, using for N = 3
the same expansion in powers of r

1/2
s than those used in

equation (5) for N → ∞. We summarize the main points,
the details being given in Appendix B. In the continuum,
the Hamiltonian Hc can written as the sum of two decou-
pled terms. Denoting R = (

∑3
i ri)/3 the coordinate of the

center of mass, the first term reads HCM = (�2/6m)∇2
R

and corresponds to the rigid translation of the molecule
while the other term contains the relative motions and the
interaction. For a Wigner molecule, the second part can
be simplified and expressed in terms of the normal coordi-
nates suitable for describing the small vibrations around
equilibrium.

The PRC repulsion is harmonic around equilibrium,
and the three particles form a diagonal chain as indicated
in the inset of Figure 4 when L/3 is integer. One gets
four decoupled harmonic oscillators, two corresponding to
a longitudinal mode of frequency ωl =

√
20B, the two

others being a transverse mode of frequency ωt =
√

8B,
where B = (

√
6e2π)/(24D3m). The zero point vibrational
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energy is then given by:

Evib(rs, N = 3) = �(ωl + ωt)

= 2π

√
5 +

√
2√

18

(
2
π

)1/4

r−β
s (35)

in rydbergs where β = 3/2, with rs = rl/(2
√

3π)
for N = 3.

7.3 Scaling of the ground state energy

From the GS energy E0(L, U, t) of K = 0, and for
a given value of N , we define the dimensionless ra-
tio FN (L, U, t) by:

FN (L, U, t) =
E0(L, U, t)− E0(L, U, t = 0)

E0(L, U = 0, t)
. (36)

This ratio gives the change of the GS energy from the
Coulomb energy due to the quantum effects, divided by
the GS energy without interaction.

The results for the PRC repulsion are shown in Fig-
ure 4. For t = 0, the values of L = 6, 9, 12, 15, 18 are
commensurate with the period of the diagonal Wigner
molecule shown in the inset. This gives the same clas-
sical Coulomb energy for the lattice and the continuum
when t → 0, eliminating a trivial source of lattice effects.
When FN=3(L, U, t) is plotted as a function of rl, the dif-
ferent functions FN=3(L, U, t) scale without an observable
lattice effect up to the r∗l (L) exactly given by Criterion 3.
Using E0(L, U = 0, t) = 12t − 8t − 4t cos(2π/L) one can
see that the numerical results coincide with the analyt-
ical result FN=3 = 0.2327

√
rl implied by equation (35)

for intermediate values of rl where one has a continuum
Wigner molecule. The function FN=3(L, U, t) saturates to
4Nt/E0(L, U = 0, t) above r∗l (L), as indicated by the
dashed lines.

8 Effect on the scaling function when N
varies

In Figure 7, a small change of the scaling curve FN (rs =
rl/(2

√
Nπ) can be seen when a fourth electron is added,

accompanied by the expected breakdown of the scaling
behavior above the corresponding r∗l for N = 4. When
N → ∞, FN should converge towards a thermodynamic
limit depending only on rs. Unfortunately, a study of this
convergence is out of reach of a numerical approach using
exact diagonalization.

9 Conclusion

We have studied the lattice effects upon an interacting
system of polarized electrons in two dimensions. We have
first considered the case where the number N of polarized
electrons is increased in a square lattice of large size L and

Fig. 7. Energy ratios FN (L, U, t) using the PRC repulsion for
N = 3 (L = 18 solid line) and N = 4 with L = 6 (◦), 8 (�),
10 (�) as a function of rs = rl/(2

√
Nπ) (PRC repulsion).

of fixed parameters U = e2/(εrs) and t = �
2/(2m∗s2).

This corresponds to semi-conductor field effect devices or
layered oxides where the number of carriers can be varied
by an electrostatic gate or by chemical doping. Starting
from an empty lattice, one has a continuum regime and
its universal scaling if one uses the parameter rs, until
the carrier density n∗

s = 1/(
√

πr∗sa∗
B)2 is reached. At this

density, the continuum approximation with its universal
scaling breaks down, as sketched in the phase diagram
given in Figure 3. This lattice threshold r∗s takes place in
a quantum fluid phase if the carriers are light and the ratio
s/a∗

B < 23. We have studied more particularly in the re-
maining part of our manuscript the case of heavy carriers
where s/a∗

B > 23, for which the continuum approximation
breaks down in the crystalline phase. We have pointed
out the limit imposed by the lattice of positive ions upon
the zero point motion of the electron lattice. We have ne-
glected the obvious problem coming from the incommen-
surability of the two lattices, and focus our attention to
the commensurate case. The studied lattice effects are in-
dependent of this commensurability issue, which should
matter at large lattice fillings.

In the second part of this manuscript, we have studied
the role of a lattice for a fixed number N = 3, 4 of po-
larized electrons. The lattice-continuum crossover is then
obtained by varying the lattice parameter rl = (UL)/t.
rl and rs play the same role when N is fixed, since
rs = rl/(2

√
πN). The continuum approximation is valid

and there is a universal scaling when one uses the param-
eter rl as far as rl does not exceed a lattice threshold r∗l
which has been determined from three criteria. One of
them was based on the behavior of the persistent cur-
rent I(rl) driven by an enclosed Aharonov-Bohm flux. For
rl < r∗l (L), I(rl) = I(rl = 0) while I(rl) decays above r∗l
and rl ceases to be a scaling parameter. For a finite number
of particles, one goes from the continuum regime towards
the lattice regime through a smooth crossover. The ques-
tion to know if this smooth crossover does not become
sharper when N → ∞, to give rise to a true quantum
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transition is an interesting issue which we postpone to a
following study.
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Appendix A: Weak interaction correction to r∗
s

When rs is small, the main effect of the interaction is
to smear the Fermi surface, giving an uncertainty ∆kF

to kF , such that one expects to have the continuum be-
havior when kF + ∆kF , and not only kF , is small. To
evaluate ∆kF , we assume that the low excited states only
become occupied at low rs. The first excitation energy
reads:

∆E1,0 = t
N∑

i=1

(
k2

i1 − k2
i0

)

= 2t
(
k′2 − k2

F

) ≈ 4tkF ∆k (37)

where the factor 2 comes from momentum conservation
and k′ is the wave vector of an empty state above the non
interacting Fermi surface. This gives us the relation:

∆EF

∆kF
≈ 4tkF . (38)

The Fermi energy uncertainty ∆EF can be estimated from
the spreading Γ of a non interacting level, when one turns
on the interaction. Using Fermi’s golden rule, one gets

Γ ≈ 2π|H0,1|2n(kF )
∆E1,0

, (39)

where the matrix element of interaction coupling the GS
to the first excited state |H0,1| = 2U(V (q) − V (2kF )) ≈
2UV (q) reads:

H01 ≈ U

L2

∑
j

eiqj

dj0
≈ U

L

∫ 1

0

∫ 1

0

cos 2πx

d(r, 0)
d2r =

IU

L
. (40)

I is a constant equal to 1.029 for the PRC repulsion.
The number of states n(kF ) on the Fermi surface is equal
to

√
4Nπ and ∆E10 = 4tkF |q| where |q| = (2π/L) is the

smallest momentum for an excitation.
One eventually gets for the Fermi energy uncertainty

∆EF ≈ Γ ≈ U2

4t
I2, (41)

which gives for the Fermi momentum uncertainty

∆kF ≈
(

UI

t

)2
L

32
√

πN
. (42)

The condition
kF + ∆kF <

π

2
(43)

is satisfied if

rs − I2

16
r3
s >

4
π

s

aB
(44)

When rs is not too large, the continuum theory is valid if
rs > r∗s with a threshold r∗s having a small correction ∝
(s/aB)3 driven by the interaction:

r∗s ≈ 4
π

s

aB
+

4I2

π3

(
s

aB

)3

. (45)

The constants in the expression of r∗s depend on the used
criterions for neglecting lattice effects (for instance 4/π
comes from the condition (43)).

Appendix B: Zero point energy of a continuum
Wigner molecule for N = 3

For three spinless fermions on a continuum square domain
of size D with periodic BCs, the continuum PRC repulsion
reads

V (r) =
e2π

D

√
sin2 rxπ

D
+ sin2 ryπ

D

. (46)

If D is large enough, the GS is a “Wigner molecule” of
delocalized center of mass, but of quasi-localized inter-
particle spacings for minimizing the Coulomb energy. For
a certain center of mass, the molecule of lowest Coulomb
energy with the repulsion (46) consists in putting the par-
ticle coordinates at r1 = (0, 0), r2 = (D/3, D/3) and
r3 = (−D/3,−D/3). This configuration has the Coulomb
energy

ECoul =
√

6e2π/D. (47)

The particles forming this molecule vibrate around the
equilibrium positions. This motion is an harmonic oscilla-
tion if the amplitude of the vibration is small. To describe
this harmonic motion, one expands the pair-potential (46)
around the equilibrium distance r0 = (D/3, D/3) up to
the second order:

V (r) ≈
√

6e2π

3D
+ (. . . )

+
7
√

6
72

e2π

D3

((
x − D

3

)2

+
(

y − D

3

)2
)

+
√

6
12

e2π

D3

(
rx − D

3

)(
ry − D

3

)
+ O(r3), (48)

where the missing term (. . . ) is the first order contribution
which disappears after summing over all the pair poten-
tials. The expansion (48) becomes:

V (r) ≈
√

6e2π

3D
+ (. . . ) + (r − r0)

(
A B

B A

)
(r − r0). (49)
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where

A =
7
√

6
72

e2π

D3
(50)

and B = 3A/7.
The three particle Hamiltonian with the expanded re-

pulsion becomes Hc ≈ ECoul+Hharm, where the harmonic
part is:

Hharm = − �
2

2m

(∇2
1 + ∇2

2 + ∇2
3

)
+ XM̂X. (51)

The vector X = (x1, y1, x2, y2, x3, y3) is composed of
the 6 relative coordinates and the 6 × 6 matrix M̂ is
given by:

M̂ =




2A 2B −A −B −A −B
2B 2A −B −A −B −A
−A −B 2A 2B −A −B
−B −A 2B 2A −B −A
−A −B −A −B 2A 2B
−B −A −B −A 2B 2A


 . (52)

Diagonalizing M̂ , one obtains the normal modes of the
harmonic oscillations while the eigenvalues of M̂ give their
frequencies. One obtains

– two eigenvectors of eigenvalue 0

χ1 =
1√
3
(1, 0, 1, 0, 1, 0) ·X,

χ2 =
1√
3
(0, 1, 0, 1, 0, 1) ·X. (53)

This zero frequency mode corresponds to the transla-
tion of the center of mass of the molecule;

– two other eigenvectors of eigenvalue 10B, correspond-
ing to the longitudinal mode (vibration parallel to the
axis of the molecule). The normal coordinates can be
taken as:

χ3 =
1
2
(1, 1,−1,−1, 0, 0) · X,

χ4 =
1√
12

(1, 1, 1, 1,−2,−2) ·X; (54)

– two eigenvectors of eigenvalue 4B, corresponding to
the transverse modes. The normal coordinates can be
taken as:

χ5 =
1
2
(1,−1,−1, 1, 0, 0) ·X,

χ6 =
1√
12

(1,−1, 1,−1,−2, 2) · X. (55)

Using these normal coordinates, the Hamiltonian (51) be-
comes a decoupled sum of two harmonic oscillators:

Hharm = − �
2

2m

6∑
α=1

∂2

∂χ2
α

+10B
(
χ2

3 + χ2
4

)
+4B

(
χ2

5 + χ2
6

)
.

(56)

For a GS of total momentum K = 0, there is no motion of
the center of mass, the GS wave-function does not depend
on χ1 and χ2 and can be factorized as:

Ψ(χ1, . . . , χ6) = ϕ0L(χ3)ϕ0L(χ4)ϕ0T (χ5)ϕ0T (χ6) (57)

where L, T refers to the transverse and longitudinal modes
and ϕ0 to the ground state of an harmonic oscillator:

ϕ0(x) =
1

l
1/2
ω π1/4

exp− x2

2l2ω
, (58)

of length lω =
(
�

2/(m2ω2)
)1/4. One eventually obtains for

the GS energy with the expanded pair potentials:

E0 − ECoul = �(ωT + ωL); (59)

ωL =

√
20B

m
, (60)

ωT =

√
8B

m
(61)

and using the expression of B:

E0 − ECoul =

√
20

√
6

24
�2e2π3

D3m
+

√
8
√

6
24

�2e2π3

D3m

= (
√

5 +
√

2)

√√
6π3

3

√
Ut

L3
. (62)

For the energy ratio FN=3(L, U, t), using for the kinetic
energy in the continuum limit E0(L, U = 0, t) = 8π2t/L2,
one gets the behavior numerically obtained from the lat-
tice Hamiltonian Hl and shown in Figure 4 for intermedi-
ate rs:

F0(rs) =
√

5 +
√

2
8π2

√√
6π3

3

√
UL

t

=
√

5 +
√

2√
96

(
18
π

)1/4 √
rs

= 0.5764
√

rs = 0.2327
√

rl. (63)

Appendix C: Lattice threshold r∗
l using

the PSC repulsion

With the distance djj′ defined by equation (31), we have
previously studied the validity of a continuum approxi-
mation for a lattice model of three polarized electrons.
In this appendix, we revisit the same issue defining djj′

from equation (30) instead of equation (31). Let us cal-
culate the quantities used for the three criteria when one
uses the PSC repulsion. For t = 0, the Wigner “molecule”
minimizing the PSC Coulomb energy has the triangular
shape shown in the inset of Figure 8, instead of the linear
shape shown in the inset of Figure 4. Moving one particle
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Fig. 8. Energy ratio FN=3(L, U, t) as a function of rl = UL/t
using the PSC repulsion for L = 6 (�), 8 (�), 10 (�), 12 (�),

14 (◦), 16 (+), 18 (�). The dotted-dashed line gives the r
2/3
l be-

havior due to the vibrations of the continuum Wigner molecule.
Inset: a GS configuration when t = 0 and L = 24.

by a single hop in this triangular molecule increases the
PSC Coulomb energy by an amount

∆E
(PSC)
Coul ≈

√
2U

L2
(64)

when L is sufficiently large, instead of the ∆E
(PRC)
Coul ∝

U/L3 given by equation (32).
For the energy change ∆E0, one obtains the same ex-

pressions as in equation (33), but with ∆ECoul given by
the equation (64) instead of equation (32). The two first
criteria gives

r∗l (L) = ALα, (65)

where α = 3 for the PSC repulsion, instead of α = 4 for
the PRC repulsion.

When one takes the PSC repulsion, the three relative
distances at equilibrium are precisely r = (L/2, L/2), r =
(0, L/2) and r = (L/2, 0) respectively when L is even. The
potentials v(δr) felt by the electrons around their equilib-
rium positions are singular and instead of the analytical
expansion (48) of v(δr), one has v(δr) ≈ C1|δrx|+C2|δry |,
where C1 and C2 depend on the equilibrium positions
and are ∝ e2/D2 = U/L2. For a single particle in a 1d-
potential v(x) = C|x|, the GS energy ε can be approxi-
mated by t/B2 + CB where B is the GS extension and
is given by ∂ε/∂B = 0. This yields B ∝ (C/t)1/3 and
ε ∝ (U2t/L4)1/3. Since the 2d-potential v(δr) is separa-
ble, one eventually finds:

E
(PSC)
vib (rs, N = 3) ∝ r−β

s (66)

in rydbergs where β = 4/3. As one can see, the PSC repul-
sion gives a higher exponent β when N = 3, which is in-
consistent with the usual expansion [2] in powers of r

−1/2
s

first proposed by Wigner.
Using equation (66), one gets from Criterion 3 r∗l given

by equation (34) again, but with α = 3 for the PSC re-
pulsion instead of α = 4 for the PRC repulsion. The PSC

repulsion is somewhat unphysical and leads to stronger
lattice effects, but provides an interesting check of the va-
lidity of our theory: the changes of ∆E

(PSC)
Coul and E

(PSC)
vib

are such that the different criterions give thresholds r∗l
which are consistent.

The dimensionless energy ratio FN (L, U, t) for the PSC
repulsion is shown in Figure 8 for even values of L, where
the GS is a triangular “molecule” shown in the inset when
t/U → 0. Again the curves scale up to the onset r∗l (L)
given by Criterion 3. But the PSC repulsion gives rise to
a different onset r∗l (L) than the PRC repulsion for N = 3,
since at intermediate rl one has FN=3 ∝ r

2/3
l for the PSC

repulsion, and not ∝ r
1/2
l as for the PRC repulsion.

Does this difference remain for larger values of N?
Indeed the contribution of pairs ij having the coordi-
nates of their spacings dij close to D/2, and responsi-
ble for the r

2/3
s behavior when dij is defined by equa-

tion (30), becomes a surface effect ∝ N compared to the
bulk contribution ∝ N2 of the remaining pairs, yielding
∆EPSC

Coul ≈ AN/L2 + BN2/L3, where A and B are con-
stant. For a fixed L and increasing N , ∆EPSC

Coul → BN2/L3

and following Criterion 1, the conventional r
1/2
s expansion

for FN should be valid for the PSC repulsion too. There-
fore, large periodic square lattices should exhibit a behav-
ior independent of the choice of the long range part of the
Coulomb repulsion when N becomes large. Another possi-
ble choice is the Ewald repulsion obtained after summing
over all the electrons present in the infinite repetition of
the same finite square in the x and y directions. For a
small number N of electrons in a periodic square, these
definitions are somewhat arbitrary. But to reach the ther-
modynamic limit, the PSC repulsion is less appropriate
than the PRC or Ewald repulsions, since it gives larger
finite N effects.

Nevertheless, the following relations for the lattice
threshold, the continuum zero point energy of the crys-
talline oscillation and the characteristic scale of the
Coulomb energy respectively:

r∗l ∝ Lα (67)

Evib ∝ r−β
l (68)

∆ECoul ∝ UL−γ (69)

remain valid independently of the used definition of the
Coulomb repulsion in the periodic square lattice,

α = γ + 1, α =
2

2 − β
(70)

between the exponents.
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9. J. González, F. Guinea, M.A.H. Vozmediano, Europhys.

Lett. 34, 711 (1996)
10. D. Zanchi, H.J. Schulz, Phys. Rev. B 54, 9509 (1996)
11. D. Weinmann, J.-L. Pichard, Y. Imry, J. Phys. I France 7,

1559 (1997)
12. G. Katomeris, F. Selva, J.-L. Pichard, Eur. Phys. J. B 31,

401 (2003)
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